Abstract

The chemo-therapeutic efficacy of Doxorubicin (Dox), a potent anti-cancer drug used in the treatment of several solid tumors, is severely compromised by its cardio-toxicity. To overcome this shortcoming and exploit the utmost theranostic potential of nano-formulations, magnetic nanoparticles co-encapsulated with Dox and indocyanine green (ICG) in a liposomal carrier and tagged with cyclic RGD peptide were rationally designed and synthesized. These magneto-liposomes (T-LMD) showed αvβ3-integrin receptor targeting and higher cyto-toxicity in several cancer cell lines (i.e. lung, breast, skin, brain and liver cancer) in combination with or without gamma radiation or magnetic hyperthermia therapy as compared to clinical liposomal nano-formulation of Dox (Lippod™). Mechanism of chemo-radio-sensitization was found to involve activation of JNK mediated pro-apoptotic signaling axis and delayed repair of DNA double strand breaks. Real time imaging of ICG labeled T-LMD suggested ~6–18 fold higher tumor accumulation of T-LMD as compared to off-target organs (kidney, liver, spleen, intestine, lungs and heart) and resulted in its higher combinatorial (chemo-radio-hyperthermia) tumor therapy efficacy as compared to Lippod™. Moreover, T-LMD showed insignificant toxicity to the heart tissue as suggested by serum levels of CK-MB, histo-pathological analysis, anti-oxidant enzyme activities (Catalase and GST) and markers of cardiac fibrosis, suggesting its potential for targeted multi-modal therapy of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call