Abstract

Despite the wide range of treatment options available for cancer therapy, including chemotherapy, radiation therapy, and surgical procedures, each of these treatments has a different side-effect profile and leaves the patient with no option but to choose. Due to their insensitivity and nonspecificity, conventional treatments damage normal cells together with cancer cells. In recent years, a significant amount of attention has been focused on photodynamic therapy (PDT) as a treatment for cancer and drug-resistant microbes. An activated photosensitizer is used as a part of the procedure along with oxygen molecules and a specific wavelength of light belonging to the visible or NIR spectral zone. A light-sensitive laser dye, rhodamine 6G (R6G), was used in the present study as a photosensitizer, taking a challenge to improve the aqueous solubility and ROS quantum yield using optimum concentration (160mg/ml) of chitosan-alginate (Cs-Alg) blended polymeric nanoformulations. As evidenced by steady-state spectrophotometric and fluorometric measurements, ROS quantum yield increases three-fold over aqueous solution along with solubility gaining that was validated by PDT experiment using human epithelial carcinoma (KB) cell line. Phantom optical imaging was taken using the IVIS imaging system to establish the formulations as a fluorescence-based optical contrast agent, and zebrafish embryos were used to establish their safe in vivo use. The release profile of R6G was fitted using kinetic models, which followed the Non-Fickian kinetic profile. In conclusion, we recommend the formulations as a potential theranostic agent that will aid in PDT-based therapy in conjunction with optical imaging-based diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.