Abstract
▪ Abstract An ultimate limit on the extent that biomass fuels can be used to displace fossil transportation fuels, and their associated emissions of CO2, will be the land area available to produce the fuels and the efficiencies by which solar radiation can be converted to useable fuels. Currently, the Brazil cane-ethanol system captures 33% of the primary energy content in harvested cane in the form of ethanol. The US corn-ethanol system captures 54% of the primary energy of harvested corn kernels in the form of ethanol. If ethanol is used to substitute for gasoline, avoided fossil fuel CO2emissions would equal those of the substituted amount minus fossil emissions incurred in producing the cane- or corn-ethanol. In this case, avoided emissions are estimated to be 29% of harvested cane and 14% of harvested corn primary energy. Unless these efficiencies are substantially improved, the displacement of CO2emissions from transportation fuels in the United States is unlikely to reach 10% using domestic biofuels. Candidate technologies for improving these efficiencies include fermentation of cellulosic biomass and conversion of biomass into electricity, hydrogen, or alcohols for use in electric drive-train vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.