Abstract

In the first part of this paper the nonlinear development of the most unstable mode is numerically studied for a bounded shear layer with a hyperbolic-tangent profile. It is found that the vortex nutation, discovered by Zabusky & Deem (1971) for a jet profile, is a manifestation of strongly coupled oscillations in the vortex amplitude and the phase. In the second part, with the aid of the numerical result we devote ourselves to deriving coupled nonlinear equations that describe the amplitude oscillation, the vortex nutation and the momentum transport. The approximate oscillatory solution for the vortex amplitude and phase in the nonlinear stage is compared with the numerical solution and agreement is found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.