Abstract

In the present paper we provide a statistical theory for the vibrational pooling and fluorescence time dependence observed in infrared laser excitation of CO on an NaCl surface. The pooling is seen in experiment and in computer simulations. In the theory, we assume a rapid equilibration of the quanta in the substrate and minimize the free energy subject to the constraint at any time t of a fixed number of vibrational quanta N(t). At low incident intensity, the distribution is limited to one-quantum exchanges with the solid and the Debye frequency of the solid plays a key role in limiting the range of this one-quantum domain. The resulting inverted vibrational equilibrium population depends only on fundamental parameters of the oscillator (ωe and ωeχe) and the surface (ωD and T). The relation to the Treanor gas phase treatment is discussed. Unlike the solid phase system, the gas phase system has no Debye-constraining maximum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.