Abstract

The valley Hall conductivity, having opposite signs between the K and K′ valleys, is calculated in disordered monolayer graphene with gap. In ideal graphene without disorder, it is quantized into ±e2/2h within the gap and its absolute value decreases in proportion to the inverse of the Fermi energy in the band continuum. In the presence of scatterers, the Hall conductivity in the band continuum is strongly enhanced. This enhancement depends on explicit form of scattering potential even in the clean limit where the concentration and strength of scatterers are vanishingly small. Numerical calculations performed within the self-consistent Born approximation for scatterers with Gaussian potential and for charged impurities show that the valley Hall conductivity remains appreciable in the presence of large disorder and exhibits double-peak structure near zero energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.