Abstract

We calculate vibrational spectra of ultralong-range Cs(32p) Rydberg molecules that form in an ultracold gas of Cs atoms. We account for the partial-wave scattering of the Rydberg electrons from the Cs perturber atoms by including the full set of spin-resolved 1,3 SJ and 1,3 PJ scattering phase shifts, and allow for the mixing of singlet (S=0) and triplet (S=1) spin states through Rydberg electron spin-orbit and ground state electron hyperfine interactions. Excellent agreement with observed data in Saßmannshausen et al. [Phys. Rev. Lett. 2015, 113, 133201] in line positions and profiles is obtained. We also determine the spin-dependent permanent electric dipole moments for these molecules. This is the first such calculation of ultralong-range Rydberg molecules for which all of the relativistic contributions are accounted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.