Abstract
By means of infinite product of uniformly distributed probability spaces of cardinal n the concept of truth degrees of propositions in the n-valued generalized Lukasiewicz propositional logic system L * n is introduced in the present paper. It is proved that the set consisting of truth degrees of all formulas is dense in [0,1], and a general expression of truth degrees of formulas as well as a deduction rule of truth degrees is then obtained. Moreover, similarity degrees among formulas are proposed and a pseudo-metric is defined therefrom on the set of formulas, and hence a possible framework suitable for developing approximate reasoning theory in n-valued generalized Lukasiewicz proposi-tional logic is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.