Abstract

The theory of traces, originated by A. Mazurkiewicz in 1977, is an attempt to provide a mathematical description of the behavior of concurrent systems. Its aim is to reconcile the sequential nature of observations of the system behavior on the one hand and the nonsequential nature of causality between the actions of the system on the other hand. One can see the theory of traces to be rooted in formal string language theory with the notion of partial commutativity playing the central role. Alternatively one can see the theory of traces to be rooted in the theory of labeled acyclic directed graphs (or even in the theory of labeled partial orders). This paper attempts to present a major portion of the theory of traces in a unified way. However, it is not a survey in the sense that a number of new notions are introduced and a number of new results are proved. Although traditionally most of the development in the theory of traces follows the string-language-theoretic line, we try to demonstrate to the reader that the graph-theoretic point of view may be more appropriate. The paper essentially consists of two parts. The first one (Sections 1 through 4) is concerned with the basic theory of traces. The second one (Section 5) presents applications of the theory of traces to the theory of the behavior of concurrent systems, where the basic system model we have chosen is the condition/event system introduced by C.A. Petri.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.