Abstract

The electron-diffusion Seebeck coefficient of metals and dilute alloys is investigated in a simple model in which free electrons are scattered by phonons or by substitutional impurities bound in the lattice. Second-order corrections to the $T$ matrix for electron scattering involving intermediate virtual phonon states are found to be of small magnitude but to have a very strong energy dependence. They thus make a large contribution to the thermoelectric coefficients while leaving the conductivities essentially unaltered. The pronounced temperature dependence of these second-order contributions allows an interpretation of experimental results that relies less on the phonomenon of phonon drag then has previously been the case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.