Abstract

Calculating the microscopic dissociation rate of a bound state, such as a classical diatomic molecule, has been difficult so far. The problem was that standard theories require an energy barrier over which the bound particle (or state) escapes into the preferred low-energy state. This is not the case when the long-range repulsion responsible for the barrier is either absent or screened (as in Cooper pairs, plasmas, or biomolecular complexes). We solve this classical problem by accounting for entropic driving forces at the microscopic level. The theory predicts dissociation rates for arbitrary potentials and is successfully tested on the example of plasma, where it yields an estimate of ionization in the core of the Sun in excellent agreement with experiments. In biology, the new theory accounts for crowding in receptor-ligand kinetics and protein aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.