Abstract

The transverse redistribution of carriers that occurs in a 2D system under the effect of a tangential electric field and a magnetic field possessing a tangential component is studied. It is shown that the redistribution of carriers gives rise to a Hall voltage across isolated electrodes positioned above and under the quantum film. This voltage is determined by the 2D conductivity tensor and the transverse static electric polarizability of the 2D layer. The additional contribution that appears in the vertical Hall voltage because of the electron spin orientation induced by magnetic field and the spin-orbit interaction of electrons with the quantum well potential is determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.