Abstract

It is well known that a current driven through a two-dimensional electron gas with Rashba spin-orbit coupling induces a spin polarization in the perpendicular direction (Edelstein effect). This phenomenon has been extensively studied in the linear response regime, i.e., when the average drift velocity of the electrons is a small fraction of the Fermi velocity. Here we investigate the phenomenon in the nonlinear regime, meaning that the average drift velocity is comparable to or exceeds the Fermi velocity. This regime is realized when the electric field is very large or when electron-impurity scattering is very weak. We consider the limiting case of a two-dimensional noninteracting electron gas with no impurities. In this case, the quantum kinetic equation for the density matrix is exactly and analytically solvable, reducing to a problem of spin dynamics for ``unpaired'' electrons near the Fermi surface. The crucial parameter is $\ensuremath{\gamma}=eE{L}_{s}/{E}_{F}$, where $E$ is the electric field, $e$ is the absolute value of the electron charge, ${E}_{F}$ is the Fermi energy, and ${L}_{s}=\ensuremath{\hbar}/(2m\ensuremath{\alpha})$ is the spin-precession length in the Rashba spin-orbit field with coupling strength $\ensuremath{\alpha}$. If $\ensuremath{\gamma}\ensuremath{\ll}1$, the evolution of the spin is adiabatic, resulting in a spin polarization that grows monotonically in time and eventually saturates at the maximum value $n(\ensuremath{\alpha}/{v}_{F})$, where $n$ is the electron density and ${v}_{F}$ is the Fermi velocity. If $\ensuremath{\gamma}\ensuremath{\gg}1$ the evolution of the spin becomes strongly nonadiabatic and the spin polarization is progressively reduced and eventually suppressed for $\ensuremath{\gamma}\ensuremath{\rightarrow}\ensuremath{\infty}$. We also predict an inverse nonlinear Edelstein effect, in which an electric current is driven by a magnetic field that grows linearly in time. The ``conductivities'' for the direct and the inverse effects satisfy generalized Onsager reciprocity relations, which reduce to the standard ones in the linear response regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.