Abstract
A low-noise, high-gain, and high-bandwidth avalanche photodiode (APD) structure is described. The device is a variation of the p-i-n doped quantum well structure that is expected to show four orders of magnitude enhancement in the carrier ionization rates. In practice, p-i-n doped quantum well devices are difficult to realize owing to the difficulty in achieving highly doped n-type AlGaAs. A structure in which the doped layers are formed in GaAs rather than in AlGaAs, but in which the performance features of the doped AlGaAs devices are retained, is described. The device consists of repeated unit cells of an intrinsic Al/sub 0.45/Ga/sub 0.55/As layer followed by p-i-n-i doped GaAs layers. Calculations based on many-particle ensemble Monte Carlo simulation of the electron and hole ionization rates as a function of the device parameters are presented, illustrating the basic design criteria. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.