Abstract

A simple model for the friction experienced by the one-dimensional water chains that flow through subnanometer diameter carbon nanotubes is studied. The model is based on a lowest order perturbation theory treatment of the friction experienced by the water chains due to the excitation of phonon and electron excitations in both the nanotube and the water chain, as a result of the motion of the chain. On the basis of this model, we are able to demonstrate how the observed flow velocities of water chains through carbon nanotubes of the order of several centimeters per second can be accounted for. If the hydrogen bonds between the water molecules are broken (as would occur if there were an electric field oscillating with a frequency equal to the resonant frequency of the hydrogen bonds present), it is shown that the friction experienced by the water flowing in the tube can be much smaller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.