Abstract

A theoretical analysis of the flow of added current carriers in homogeneous semiconductors is given. The simplifying assumption is made at the outset that trapping effects may be neglected, and the subsequent treatment is intended particularly for application to germanium. In a general formulation, differential equations and boundary-condition relationships in suitable reduced variables and parameters are derived from fundamental equations which take into account the phenomena of drift, diffusion, and recombination. This formulation is specialized so as to apply to the steady state of constant total current in a single cartesian distance coordinate, and properties of solutions which give the electrostatic field and the concentrations and flow densities of the added carriers are discussed. The ratio of hole to electron concentration at thermal equilibrium occurs as parameter. General solutions are given analytically in closed form for the intrinsic semiconductor, for which the ratio is unity, and for some limiting cases as well. Families of numerically obtained solutions dependent on a parameter proportional to total current are given for n-type germanium for the ratio equal to zero. The solutions are utilized in a consideration of simple boundary-value problems concerning a single plane source in an infinite filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.