Abstract
AbstractA double‐resonance process gives rise to the 2D band in the Raman spectra of monolayer and bilayer graphene. Based on the electronic and vibrational dispersion energies of graphene, the wavenumbers of the 2D band were calculated under different laser excitation energies (from 1.0 to 4.4 eV). Calculated results are in good agreement with experimental data and reproduce the experimental dispersion slope of the 2D band very well. The calculated wavenumbers of the 2D band do not show a linear dependence on the laser excitation energies. Moreover, it is explained that the lowest wavenumber peak of the 2D band of the bilayer graphene, which is composed of four components, has the largest slope with laser excitation energy. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.