Abstract

The first-order quantum correction for the characterization of spontaneous radiation is calculated by means of electron quasi-classical trajectory-coherent states in an arbitrary electromagnetic field. Well known expressions for the characterization of spontaneous radiation are obtained using quasi-classical approximation. The first-order quantum correction is derived as a functional from a classical trajectory (among which is a classical spin vector). Transitions with spin flip and without spin flip are distinguished. Those elements connected with photon kick and quantum motion characteristics are selected for first-order quantum correction. It is shown that, using an ultra-relativistic approximation, the latter may be ignored, but when using a non-relativistic approximation their contributions are approximately equal. A special trajectory-coherent representation that significantly simplifies the investigation of spontaneous radiation is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call