Abstract

The Co 2p X-ray photoemission spectrum (XPS) of LaCoO3 is investigated using a dp model simulating Co 3d and O 2p orbitals by means of a dynamical mean-field approach under the perovskite crystal structure. Across the spin-state transition from the low-spin to the high-spin state, the Co 2p3/2 main-line structure is substantially changed beyond expectation of a CoO6 cluster model calculation. In addition to the Coulombic multiplet effect, the origin of the spectral change is attributed to the nonlocal screening (NLS) from the correlated 3d band located on the top of the valence band to the core-excited Co site in the final state, where the NLS is practically active only for the high-spin state. The spin-state selectivity of the NLS is closely related to not only the spin state of the core-excited Co ion but also the spin and orbital character of the occupied Co 3d band in crystals. We emphasize that the Co 2p XPS can be an informative probe to investigate the spin state of Co ions in Co oxides, such as LaCoO3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.