Abstract

We investigate two schemes for pumping spin adiabatically from a ferromagnet through an interacting quantum dot into a normal lead that exploit the possibility to vary in time the ferromagnet's magnetization, either its amplitude or its direction. For this purpose, we extend a diagrammatic real-time technique for pumping to situations in which the leads' properties are time dependent. In the first scheme, the time-dependent magnetization amplitude is combined with a time-dependent level position of the quantum dot to establish both a charge and a spin current. The second scheme uses a uniform rotation of the ferromagnet's magnetization direction to generate a pure spin current without a charge current. We discuss the influence of an interaction-induced exchange field on the pumping characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.