Abstract

ABSTRACTA phenomenological theory of Schottky contact formation to GaAs (110) surfaces at room temperature is discussed. The theory splits into two regimes, low- and high-metal coverages. In the low-coverage regime the movement of the Fermi level is proposed to occur because of universal derelaxation of the GaAs (110) surface. For large metal depositions, the resulting barrier heights are hypothesized to be determined by the interaction of either free (not involved in compound formation with other species) metal or free As with the GaAs surface region. It is shown that based on simple considerations of the relative enthalpy of metal-arsenide formation, it is possible to decide which species is responsible for the barrier height and, thus, to account for the majority of barrier heights to the GaAs (110) surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call