Abstract

A theory of resonant Raman scattering spectroscopy of one dimensional electronic systems is developed on the assumptions that (i) the excitations of the one dimensional electronic system are described by the Luttinger Liquid model, (ii) Raman processes involve virtual excitations from a filled valence band to an empty state of the one dimensional electronic system and (iii) excitonic interactions between the valence and conduction bands may be neglected. Closed form analytic expressions are obtained for the Raman scattering cross sections, and are evaluated analytically and numerically for scattering in the polarized channel, revealing a "double-peak" structure with the lower peak involving multispinon excitations with total spin S=0 and the higher peak being the conventional plasmon. A key feature of our results is a nontrivial power law dependence, involving the Luttinger Liquid exponents, of the dependence of the Raman cross sections on the difference of the laser frequency from resonance. We find that near resonance the calculated ratio of intensity in the lower energy feature to the intensity in the higher energy feature saturates at a value of the order of unity (times a factor of the ratio of the velocities of the two modes). We explicate the differences between the 'Luttinger liquid' and 'Fermi liquid' calculations of RRS spectra and argue that excitonic effects, neglected in all treatments so far, are essential for explaining the intensity ratios observed in quantum wires. We also discuss other Luttinger liquid features which may be observed in future RRS experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call