Abstract
Representations in complete and irreducible forms for tensor functions allow general consistent invariant forms of the nonlinear constitutive equations and specify the number and type of the scalar variables involved. They have proved to be even more pertinent in attempts to model mechanical behavior of anisotropic materials, since here invariant conditions predominate and the number and type of independent scalar variables cannot be found by simple arguments. In the last few years, the theory of representations for tensor functions has been well established, including three fundamental principles, a number of essential theorems and a large amount of complete and irreducible representations for both isotropic and anisotropic tensor functions in three- and two-dimensional physical spaces. The objective of the present monograph is to summarize and recapitulate the up-to-date developments and results in the theory of representations for tensor functions for the convenience of further applications in contemporary applied mechanics. Some general topics on unified invariant formulation of constitutive laws are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.