Abstract

An important physical property for a stochastic process is how it responds to an external force or spatial confinement. This paper aims to study the relaxation dynamics of a generic process confined in a harmonic potential. We find the dependence of ensemble- and time-averaged mean squared displacements of the confined process on the velocity correlation function C(t,t+τ) of the original process without any external force. Combining two kinds of scaling forms of C(t,t+τ) for small τ and large τ, the stationary value and the relaxation behaviors can be immediately obtained. Our results are valid for a large amount of anomalous diffusion processes, including the ones with single-scaled velocity correlation function (such as fractional Brownian motion and scaled Brownian motion) and the multiscaled ones (like Lévy walk with a broad range of power law exponents of flight time distribution). Note that the latter includes a special case with telegraphic active noise, which could take up athermal energy from the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call