Abstract
A theory of radiating shocks that are optically thick in the downstream (postshock) state and optically thin in the upstream (preshock) state, which are called thick-thin shocks, is presented. Relations for the final temperature and compression, as well as the postshock temperature and compression as a function of the shock strength and initial pressure, are derived. The model assumes that there is no radiation returning to the shock from the upstream state. Also, it is found that the maximum compression in the shock scales as the shock strength to the 1/4 power. Shock profiles for the material downstream of the shock are computed by solving the fluid and radiation equations exactly in the limit of no radiation returning to the shock. These profiles confirm the validity and usefulness of the model in that limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.