Abstract
Hindered transport theory and homogeneous electro-transport theory are used to calculate the limiting, high volume flux, rejection of, respectively, neutral solutes and binary electrolytes by granular porous nanofiltration membranes. For ceramic membranes prepared from metal oxides it is proposed that the membrane structural and charge parameters entering into the theory, namely the effective pore size and membrane charge density, can be estimated from independent measurements: the pore radius from the measured hydraulic radius using a model of sintered granular membranes and the effective membrane charge density from the hydraulic radius and the electrophoretic mobility measurements on the ceramic powder used to prepare the membrane. The electro-transport theory adopted here is valid when the membrane surface charge density is low enough and the pore radius is small enough for there to be strong electrical double layer overlap in the pores. Within this approximation the filtration streaming potential is also derived for binary electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.