Abstract

Abstract Small amplitude planetary waves are superimposed on a mean zonal flow with arbitrary horizontal and vertical shears. An expression is derived for the change of the zonal wind and temperature field forced by statistically stationary eddies satisfying a source-free planetary wave equation. This result depends on the existence of singular lines, where the phase speed of an elementary wave is equal to the mean zonal wind speed, or on the presence of a Newtonian cooling process. Second-order interactions vanish when both of these phenomena are absent. The planetary wave-zonal flow interaction is discussed in terms of the eddy transport of potential vorticity. The theory provides a partial interpretation of the maintenance of atmospheric zonal flows, such as that of the wintertime stratosphere, by planetary waves propagating from some other region of the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.