Abstract

In this paper we present a general theoretical framework to study interacting electrons under the influence of an external time-periodic driving, such as a homogeneous laser field. This is performed through a true many-body calculation and the use of Floquet theory. In particular, we consider a linear atomic chain using the Hubbard model to describe the short-ranged Coulomb interactions between electrons, plus Cluster Perturbation Theory to embed the many-body exact solution for a finite system into both an extended and an infinite lattice. Due to the presence of the external time-periodic perturbation, the electronic problem can be mapped into the study of photon-dressed quasiparticles thanks to Floquet theorem, keeping into account of all the virtual processes (absorption and emission of photons by electrons) with the laser field. This leads to an extension of the many-body static theories to out-of-equilibrium systems. This theoretical approach allowed us to show how the electronic properties of the system can be controlled and tuned varying the laser parameters. Above all, an inverse insulator-to-metal transition can be obtained for the one dimensional infinite lattice, and edge localized states appear as a finite size effect in an extended truncated chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.