Abstract

The formalism of the previous paper, in which mass and proper time are treated as independent dynamical variables in a canonical formalism, is shown to imply certain physical consequences. There will exist a mass vs proper time uncertainty relation; trajectories and proper time will be exactly determinable in an external gravitational field, while mass will be determinable in an external electromagnetic field; and conventional quantum mechanics will imply that equivalence is invalid for low-lying quantum states. This leads to a second possible way to quantize a system in a gravitational field, which introduces a fundamental length. It is shown that it is possible to test for quantum interference effects of gravitational systems with present technology and conventional techniques, using the earth's gravitational field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.