Abstract

We construct the coherent-mode representation for fluctuating, statistically stationary electromagnetic fields. The modes are shown to be spatially fully coherent in the sense of a recently introduced spectral degree of electromagnetic coherence. We also prove that the electric cross-spectral density tensor can be rigorously expressed as a correlation tensor averaged over an appropriate ensemble of strictly monochromatic vectorial wave functions. The formalism is demonstrated for partially polarized, partially coherent Gaussian Schell-model beams, but the theory applies to arbitrary random electromagnetic fields and can find applications in radiation and propagation and in inverse problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.