Abstract
In this paper we analyze the millimeter-wave propagation characteristics of a dielectric wavegaide containing a plasma-dominated region. Such a device presents a new method for controlfirrg millimeter-wave propagation in semiconductor waveguides via either optical or electronic means resulting in ultrafast switching and gating. We have calculated the phase shift and attenuation resulting from the presence of the plasma. Higher order modes, both TE and TM, as well as millimeter-wave frequency variation, are studied in both Si and GaAs dielectric wavegnides. We have also formulated a surface plasma model that is a good approximation to the more elaborate volume plasma model. Phase shifts are predicted to he as high as 1400°/cm for modes operating near cutoff. These modes suffer very little attenuation when the plasma region contains a sufficiently high carrier density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.