Abstract

We theoretically study the optical activity in a doped system and derive the optical activity tensor from a light wave vector dependent linear optical conductivity. Although the light-matter interaction is introduced through the velocity gauge from a minimal-coupling Hamiltonian, we find that the well-known ``false divergences'' problem can be avoided in practice if the electronic states are described by a finite-band effective Hamiltonian, such as a few-band tight-binding model. The expression we obtain for the optical activity tensor is in good numerical agreement with a recent theory derived for an undoped topologically trivial gapped system. We apply our theory to the optical activity of a gated twisted bilayer graphene, with a detailed discussion of the dependence of the results on twist angle, chemical potential, gate voltage, and location of rotation center forming the twisted bilayer graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.