Abstract

A quantum dissipation theory is constructed with the system–bath interaction being treated rigorously at the second-order cumulant level for both reduced dynamics and initial canonical boundary condition. The theory is valid for arbitrary bath correlation functions and time-dependent external driving fields, and satisfies correlated detailed-balance relation at any temperatures. The general formulation assumes a particularly simple form in driven Brownian oscillator systems in which the correlated driving-dissipation effects can be accounted for exactly in terms of local-field correction. Remarks on a class of widely used phenomenological quantum master equations that neglects the bath dispersion-induced dissipation are also made in contact with the present theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.