Abstract

Due to the complexity of oil-in-water emulsions, the existing literature is still missing a mathematical tool that can describe membrane fouling in a fully quantitative manner on the basis of relevant fouling mechanisms. HypothesisIn this work, a quantitative model that successfully describes cake layer formation and pore blocking is presented. We propose that the degree of pore blocking is determined by the membrane contact angle and the resulting surface coverage, while the cake layer is described by a mass balance and a cake erosion flux. ValidationThe model is validated by comparison to experimental data from previous works (Dickhout et al. 2019; Virga et al., 2020) where membrane type, surfactant type and salinity were varied. Most input parameters could be directly taken from the experimental conditions, while four fitting parameters were required. FindingsThe experimental data can be well described by the model which was developed to provide insight into the dominant fouling mechanisms. Moreover, where existing models usually assume that pore blocking precedes cake layer formation, here we find that cake layer formation can start and occur while the degree of pore blocking is still increasing, in line with the more dynamic nature of oil droplets filtration. These new conceptual advances in the field of colloid and interface science open up new pathways for membrane fouling understanding, prevention and control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.