Abstract
We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.