Abstract

A theory of multiphoton photoemission is derived to explain the experimentally observed monotonic decrease with the wavelength in the electron yield of TiO2 nanoparticles (NPs) by as large as four orders of magnitude. It is found that the fitting parameter corresponds to the energy position of Ti3d eg and t2g states, and the derived theory is a novel diagnostic of excited states in the conduction band, very importantly, applicable to individual NPs. The difference between four-photon slope NPs and three-photon slope NPs is attributed to the difference in defect density. The success of the theory in solving the puzzling result shows that thermal emission from high-lying levels may dominate over direct multiphoton ionization in solids when the photon number larger than four is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call