Abstract
We study the emergence of multiband superconductivity with s- and d-wave symmetry on the background of a spin density wave (SDW). We show that the SDW coherence factors renormalize the momentum dependence of the superconducting (SC) gap, yielding a SC state with an unconventional s-wave symmetry. Interband Cooper pair scattering stabilizes superconductivity in both symmetries. With increasing SDW order, the s-wave state is more strongly suppressed than the d-wave state. Our results are universally applicable to two-dimensional systems with a commensurate SDW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.