Abstract
A Landau free energy is derived for the weak segregation regime (WSR) of melts belonging to a very general class of statistical multiblock copolymers, referred to as “multiple segment-type statistical multiblock copolymers.” Copolymer chains in this class consist of sequences of up to M⩾2 chemically different types of segments, organized into sequences of blocks of varying lengths (molecular weights). The possible sequences of blocks that are encountered in the copolymer chains, as far as their type is concerned, are described by a first-order Markov process, while the block molecular weight distributions of these M types of blocks are completely arbitrary. The number of blocks per chain is assumed to be large. This class of copolymers is sufficiently general to encompass all industrial relevant bulk statistical multiblock copolymers, such as all known thermoplastic elastomers. The particular free energy considered is just one realization of an even more general Landau free energy which is applicable to the WSR of melts of all conceivable copolymers, including homopolymers and all possible blends. The derivation of this Landau free energy is given in Appendix A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.