Abstract
Theoretical calculations and models to explain two unusual features of Fe/Cr magnetically layered structures are presented: (1) Strong antiferromagnetic (AF) couplings between Fe layers separated by Cr layers have been found in Fe/Cr/Fe sandwiches and Fe/Cr superlattices. These AF couplings are too strong to be accounted for by dipolar interactions and have to be ascribed to exchange interactions through the Cr layers. The interlayer exchange coupling from numerical calculations of the electronic structure of Fe/Cr superlattices based on the local density approximation is derived. (2) Recently, giant magnetoresistance effects have been found in Fe/Cr magnetically layered structures for currents in the plane of the layers. The spin-dependent scattering at the Fe/Cr interfaces that comes from interface roughness, as well as that in the bulk of the layers are considered. The resistivity of these magnetic superlattices are calculated by adapting the quantum treatment of the electrical conductivity of ultrathin metallic films. We find the resistivity when the Fe moments in adjacent layers are parallel and antiparallel, and compare the results with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.