Abstract

We theoretically investigate the mechanism to generate large intrinsic spin Hall effect in iridates or more broadly in 5d transition metal oxides with strong spin-orbit coupling. We demonstrate such a possibility by taking the example of orthorhombic perovskite iridate with nonsymmorphic lattice symmetry, SrIrO3, which is a three-dimensional semimetal with nodal line spectrum. It is shown that large intrinsic spin Hall effect arises in this system via the spin-Berry curvature originating from the nearly degenerate electronic spectra surrounding the nodal line. This effect exists even when the nodal line is gently gapped out, due to the persistent nearly degenerate electronic structure. The magnitude of the spin Hall conductivity is shown to be comparable to the best known example such as doped topological insulators and the biggest in any transition metal oxides. To gain further insight, we compute the intrinsic spin Hall conductivity in both bulk and thin film systems. We find that the geometric confinement in thin films leads to significant modifications of the electronic states, leading to even bigger spin Hall conductivity in certain cases. We compare our findings with the recent experimental report on the discovery of large spin Hall effect in SrIrO3 thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.