Abstract

The aperiodic or chaotic behavior for one-dimensional maps just before a tangent bifurcation occurs appears as intermittency in which long laminarlike regions irregularly separated by bursts occur. Proceeding from the picture proposed by Pomeau and Manneville, numerical experiments and analytic calculations are carried out on various models exhibiting this behavior. The behavior in the presence of external noise is analyzed, and the case of a general power dependence of the curve near the tangent bifurcation is studied. Scaling relations for the average length of the laminar regions and deviations from scaling are determined. In addition, the probability distribution of path lengths, the stationary distribution of the maps, the correlation function and power spectrum of the map in the intermittent region, and the Lyapunov exponent are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.