Abstract

A concise and straightforward model of nonlinear grain based on the carrier heating effect in semiconductor lasers is presented. The problem is formulated using the density matrix approach and includes a priori the effect of free-carrier absorption. Coupled field-medium equations involving photon densities, carrier densities, and carrier temperatures are derived using the results of the density matrix method. The propagation of ultrashort pulses in laser amplifiers is studied and a qualitatively new model along with results on the transient gain recovery dynamics are presented. The model accounts for the wavelength dependence of the asymmetric part of the nonlinear gain observed in direct mixing experiments observed in semiconductor lasers. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.