Abstract

High-harmonic generation (HHG) in bulk crystals exposed to intense mid-infrared lasers with photon energies below the bandgap is investigated theoretically. A three dimensional, two-band model that considers both interband and intraband currents is used. It is shown that the interband current is the dominant mechanism for HHG in solids. A physical interpretation of interband HHG – similar to atomic HHG – is provided by saddle point analysis. The effects of dephasing time and driving field wavelength on the harmonic specrum are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call