Abstract

We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable systems. For pure states, we present a simplified procedure to obtain the maximum violation of the Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine tripartite entanglement measured via Rényi-2 entropy. The maximum Svetlichny violation admits tight upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the nonclassical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise recipes for its experimental verification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.