Abstract

We have developed a theory describing the operation of lasers based on intersubband transitions in a quantum well. The theory combines a first-principles description of the intersubband lineshape and the optical gain with kinetic models for carrier heating. The theory is consistent with the experimental data available and suggests new ways of improving the laser design for room-temperature operation with high output power. At low carrier concentrations, it is possible to achieve positive values of the gain at room temperature even in the absence of an overall population inversion between quantum-well subbands. For higher (but still moderate) concentrations, the theory predicts a peculiar dependence of the output wavelength on the pump current, including a regime where the lasing wavelength switches "digitally" between two stable values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.