Abstract

A theoretical treatment is provided for the calculation of EPR (electron paramagnetic resonance) lineshape as affected by interactions with paramagnetic ions in the vicinity. The internal fields seen by the various paramagnetic ions due to interactions with paramagnetic ions in their vicinity, as well as the resulting lineshapes, become quite significant at high magnetic fields required in high-frequency (HFHF) EPR. The resulting EPR signals for the various ions are therefore characterized by different g-shifts and lineshapes, so that the overall EPR lineshape, which is an overlap of these, becomes distorted, or even split in HFHF EPR, from that observed at lower frequencies. The observed EPR lineshapes in MnSO4⋅H2O powder and K3CrO8 single-crystal samples have been simulated here taking into account g-shifts and modified lineshapes. These simulations show that in these samples, concentrated in paramagnetic spins, the position and lineshapes of EPR signals are significantly modified in HFHF EPR involving very high magnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call