Abstract
AbstractIn this paper, a theory of Endochronic cyclic viscoplasticity of eutectic Tin/Lead (60Sn/40Pb) solder alloy under cyclically thermomechanical strain histories had been established. Under the conditions of isotropic and inelastically incompressible small deformation, the constitutive equation of deviatoric behavior was expressed as:here and the strain rate dependent intrinsic time scale and . Employing the experimental cyclic shear stress-strain curves of various testing temperature and frequency, all temp. dependent material parameters and ; and the temp.-freq. dependent material function were determined for temp. between 213K and 423K and freq. between 0.3Hz and 0.01Hz. Predicative capability of the theory were then challenged by a set of experiments with complicate strain history such as (i) Fast in tension/Slow in compression constant strain amplitude cyclic tests (ii) Slow-Fast-Slow constant amplitude cyclic tests. Through the excellent computational results, the present theory demonstrated that it can, not only play a vital role in the area of electronic solder mechanics, but also meet the needs of reliability analysis and life assessment in the electronic/photoelectronic packagings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.