Abstract

A general theory is presented for electrooptic shock (Cerenkov) radiation in transparent crystals having a linear electrooptic effect. Significant amounts of shock radiation require subpicosecond pulses of suitably focused laser radiation to produce a moving pulse of polarization in the medium. The theory obtains expressions for the radiated electric field, power spectrum, and total energy. Both 2D and 3D geometries are discussed as well as the proper focusing conditions. Numerical examples are given based on the nonlinear material LiTaO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.