Abstract

An effective mass based model accounting for the conduction band quantization in a high aspect ratio semiconductor nanotip is developed to describe injected electron transport and subsequent electron emission from the nanotip. A transfer matrix formalism is used to treat electron scattering induced by the variation in the tip diameter and in the electron emission. Numerical analysis of the scattering and emission probabilities is performed for the diamond parametrized nanotip model. Our scattering and emission models are further combined with a Monte Carlo (MC) approach to simulate electron transport through the nanotip. The MC simulations, also accounting for the electron-phonon scattering and externally applied electric field, are performed for a minimal nanotip model and an equivalent width diamond slab. An effect of the level quantization, electron scattering due to the nanotip diameter variation, and electron-phonon scattering on the nanotip emission properties are identified and compared with the case of a bulk slab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.