Abstract

A theory of the cyclotron maser interaction between an annular electron beam and the standing electromagnetic wave in a cavity structure is formulated on the basis of the relativistic Vlasov equation and the Maxwell equations. Detailed analytical expressions for the beam-wave coupling coefficient, beam energy gain, and threshold beam power have been derived for the fundamental and higher cyclotron harmonics. Physical interpretations of these results and comparison with cyclotron maser interactions in a waveguide structure are presented. Methods of parameter optimization and their applications to experiments are illustrated through numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.